Search results
Results from the WOW.Com Content Network
The slant height of a right circular cone is the distance from any point on the circle of its base to the apex via a line segment along the surface of the cone. It is given by r 2 + h 2 {\displaystyle {\sqrt {r^{2}+h^{2}}}} , where r {\displaystyle r} is the radius of the base and h {\displaystyle h} is the height.
In all of the following nose cone shape equations, L is the overall length of the nose cone and R is the radius of the base of the nose cone. y is the radius at any point x, as x varies from 0, at the tip of the nose cone, to L. The equations define the two-dimensional profile of the nose shape.
Steradians can be used to measure a solid angle of any shape. The solid angle subtended is the same as that of a cone with the same projected area. A solid angle of one steradian subtends a cone aperture of approximately 1.144 radians or 65.54 degrees.
The cone over a closed interval I of the real line is a filled-in triangle (with one of the edges being I), otherwise known as a 2-simplex (see the final example). The cone over a polygon P is a pyramid with base P. The cone over a disk is the solid cone of classical geometry (hence the concept's name). The cone over a circle given by
Heron of Alexandria is noted for deriving this formula, and with it, encountering the imaginary unit: the square root of negative one. [4] In particular: The volume of a circular cone frustum is: = (+ +), where r 1 and r 2 are the base and top radii.
This volume is given by the formula 1 / 3 π r 4, and is the 4-dimensional equivalent of the solid cone. The ball may be thought of as the 'lid' at the base of the 4-dimensional cone's nappe, and the origin becomes its 'apex'. This shape may be projected into 3-dimensional space in various ways.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.