Search results
Results from the WOW.Com Content Network
A wave function for a single electron on 5d atomic orbital of a hydrogen atom. The solid body shows the places where the electron's probability density is above a certain value (here 0.02 nm −3): this is calculated from the probability amplitude. The hue on the colored surface shows the complex phase of the wave function.
The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively). Wave functions are complex ...
In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process. [1] At large distances from the centrally symmetric scattering center, the plane wave is described by the wavefunction [ 2 ]
The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a given position is proportional to the square of the amplitude of the system's wavefunction at that position.
Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current (i.e. the probability current density) is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.
These are essentially the solutions of the Dirac equation, which describe the behavior of the electron's probability amplitude and the Maxwell's equations, which describes the behavior of the photon's probability amplitude. These are called Feynman propagators. The translation to a notation commonly used in the standard literature is as follows:
The propagator lets one find the wave function of a system, given an initial wave function and a time interval. The new wave function is given by (,) = (′, ′) (,; ′, ′) ′. If K(x, t; x′, t′) only depends on the difference x − x′, this is a convolution of the initial wave function and the propagator.
A so-called eigenmode is a solution that oscillates in time with a well-defined constant angular frequency ω, so that the temporal part of the wave function takes the form e −iωt = cos(ωt) − i sin(ωt), and the amplitude is a function f(x) of the spatial variable x, giving a separation of variables for the wave function: (,) = ().