Search results
Results from the WOW.Com Content Network
Let φ 1 = 0, φ 2 = 2π; then the area of the black region (see diagram) is A 0 = a 2 π 2, which is half of the area of the circle K 0 with radius r(2π). The regions between neighboring curves (white, blue, yellow) have the same area A = 2a 2 π 2. Hence: The area between two arcs of the spiral after a full turn equals the area of the circle ...
A polar rose is a mathematical curve that looks like a petaled flower, and that can be expressed as a simple polar equation, = (+) for any constant γ 0 (including 0). If k is an integer, these equations will produce a k -petaled rose if k is odd , or a 2 k -petaled rose if k is even.
Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...
Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).
Using either one of the polar representations above, the area of the interior of the loop is found to be /. Moreover, the area between the "wings" of the curve and its slanted asymptote is also 3 a 2 / 2 {\displaystyle 3a^{2}/2} .
Equivalently, in polar coordinates (r, θ) it can be described by the equation = with real number b. Changing the parameter b controls the distance between loops. From the above equation, it can thus be stated: position of the particle from point of start is proportional to angle θ as time elapses.
In three dimensions, a single equation usually gives a surface, and a curve must be specified as the intersection of two surfaces (see below), or as a system of parametric equations. [18] The equation x 2 + y 2 = r 2 is the equation for any circle centered at the origin (0, 0) with a radius of r.
The p-th polar of a C for a natural number p is defined as Δ Q p f(x, y, z) = 0. This is a curve of degree n−p. When p is n−1 the p-th polar is a line called the polar line of C with respect to Q. Similarly, when p is n−2 the curve is called the polar conic of C.