Search results
Results from the WOW.Com Content Network
Section B contains 4 questions where students are given the choice to answer 3 out of 4 of them. Section C contains 4 questions where students are only required to answer 2 out of 4 of the given questions. All Section C questions are based on the same chapters every year and are thus predictable.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.
The AP Program includes specifications for two calculus courses and the exam for each course. The two courses and the two corresponding exams are designated as Calculus AB and Calculus BC. Calculus AB can be offered as an AP course by any school that can organize a curriculum for students with advanced mathematical ability. [1]
In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula. These polynomials occur in the study of many special functions and, in particular, the Riemann zeta function and the Hurwitz ...
A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form , where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.
In consequence of this definition the binomial theorem can be stated by saying that the sequence {: =,,, …} is of binomial type.; The sequence of "lower factorials" is defined by = () (+). (In the theory of special functions, this same notation denotes upper factorials, but this present usage is universal among combinatorialists.)