enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The NavierStokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  3. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    NavierStokes equation and the continuity equation [ edit ] In order to analytically find the stability of fluid flows, it is useful to note that hydrodynamic stability has a lot in common with stability in other fields, such as magnetohydrodynamics , plasma physics and elasticity ; although the physics is different in each case, the ...

  4. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This equation is called the mass continuity equation, or simply the continuity equation. This equation generally accompanies the NavierStokes equation. In the case of an incompressible fluid, ⁠ Dρ / Dt ⁠ = 0 (the density following the path of a fluid element is constant) and the equation reduces to:

  5. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_existence...

    In mathematics, the NavierStokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  6. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    A continuity equation is the mathematical way to express this kind of statement. For example, the continuity equation for electric charge states that the amount of electric charge in any volume of space can only change by the amount of electric current flowing into or out of that volume through its boundaries.

  7. Geostrophic current - Wikipedia

    en.wikipedia.org/wiki/Geostrophic_current

    The geostrophic equations are a simplified form of the NavierStokes equations in a rotating reference frame. In particular, it is assumed that there is no acceleration (steady-state), that there is no viscosity, and that the pressure is hydrostatic. The resulting balance is (Gill, 1982):

  8. Darcy's law - Wikipedia

    en.wikipedia.org/wiki/Darcy's_law

    For stationary, creeping, incompressible flow, i.e. ⁠ D(ρu i) / Dt ⁠ ≈ 0, the NavierStokes equation simplifies to the Stokes equation, which by neglecting the bulk term is: =, where μ is the viscosity, u i is the velocity in the i direction, and p is the pressure. Assuming the viscous resisting force is linear with the velocity we ...

  9. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    The equation of motion for Stokes flow can be obtained by linearizing the steady state NavierStokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the NavierStokes equations reduces it to the momentum balance in the Stokes equations: [1]