enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthocenter - Wikipedia

    en.wikipedia.org/wiki/Orthocenter

    The orthocenter of a triangle, usually denoted by H, is the point where the three (possibly extended) altitudes intersect. [1] [2] The orthocenter lies inside the triangle if and only if the triangle is acute. For a right triangle, the orthocenter coincides with the vertex at the right angle. [2]

  3. Altitude (triangle) - Wikipedia

    en.wikipedia.org/wiki/Altitude_(triangle)

    The orthocenter of a triangle, usually denoted by H, is the point where the three (possibly extended) altitudes intersect. [1] [2] The orthocenter lies inside the triangle if and only if the triangle is acute. For a right triangle, the orthocenter coincides with the vertex at the right angle. [2]

  4. Triangle center - Wikipedia

    en.wikipedia.org/wiki/Triangle_center

    In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The orthocenter (blue point), the center of the nine-point circle (red), ... is a formula for finding the area of a triangle from the lengths of its sides ...

  6. Orthocentric system - Wikipedia

    en.wikipedia.org/wiki/Orthocentric_system

    Orthocentric system.Any point is the orthocenter of the triangle formed by the other three. In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three.

  7. Euler line - Wikipedia

    en.wikipedia.org/wiki/Euler_line

    In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

  8. Polar circle (geometry) - Wikipedia

    en.wikipedia.org/wiki/Polar_circle_(geometry)

    The first parts of the radius formula reflect the fact that the orthocenter divides the altitudes into segment pairs of equal products. The trigonometric formula for the radius shows that the polar circle has a real existence only if the triangle is obtuse, so one of its angles is obtuse and hence has a negative cosine.

  9. Acute and obtuse triangles - Wikipedia

    en.wikipedia.org/wiki/Acute_and_obtuse_triangles

    However, while the orthocenter and the circumcenter are in an acute triangle's interior, they are exterior to an obtuse triangle. The orthocenter is the intersection point of the triangle's three altitudes, each of which perpendicularly connects a side to the opposite vertex. In the case of an acute triangle, all three of these segments lie ...