Search results
Results from the WOW.Com Content Network
Temporal summation refers to successive excitatory stimuli on the same location of the postsynaptic neuron. Both types of summation are the result of adding together many excitatory potentials; the difference being whether the multiple stimuli are coming from different locations at the same time (spatial) or at different times from the same ...
Basic ways that neurons can interact with each other when converting input to output. Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultaneous inputs (spatial summation), and from repeated inputs ...
Electrotonic potentials can sum spatially or temporally. Spatial summation is the combination of multiple sources of ion influx (multiple channels within a dendrite, or channels within multiple dendrites), whereas temporal summation is a gradual increase in overall charge due to repeated influxes in the same location. Because the ionic charge ...
Fig. 1: Spatial and temporal summation. Two EPSPs innervated in rapid succession sum to produce a larger EPSP, or an action potential in the postsynaptic cell. Coincidence detection relies on separate inputs converging on a common target.
The greater the value of the length constant, the further the potential will travel. A large length constant can contribute to spatial summation—the electrical addition of one potential with potentials from adjacent areas of the cell. The length constant can be defined as: = +
Examples of graded potentials. Graded potentials are changes in membrane potential that vary according to the size of the stimulus, as opposed to being all-or-none.They include diverse potentials such as receptor potentials, electrotonic potentials, subthreshold membrane potential oscillations, slow-wave potential, pacemaker potentials, and synaptic potentials.
For example, figure 1 depicts the localized nature and the graded potential nature of these subthreshold membrane potential oscillations, also giving a visual representation of their placement on an action potential graph, comparing subthreshold oscillations versus a fire above the threshold. In some types of neurons, the membrane potential can ...
The spectro-temporal receptive field or spatio-temporal receptive field (STRF) of a neuron represents which types of stimuli excite or inhibit that neuron. [1] " Spectro-temporal" refers most commonly to audition, where the neuron's response depends on frequency versus time, while "spatio-temporal" refers to vision, where the neuron's response depends on spatial location versus time.