Search results
Results from the WOW.Com Content Network
In geometry, a disk (also spelled disc) [1] is the region in a plane bounded by a circle. A disk is said to be closed if it contains the circle that constitutes its boundary, and open if it does not. [2] For a radius, , an open disk is usually denoted as and a closed disk is ¯.
This function from the unit circle to the half-open interval [0,2π) is bijective, open, and closed, but not continuous. It shows that the image of a compact space under an open or closed map need not be compact. Also note that if we consider this as a function from the unit circle to the real numbers, then it is neither open nor closed.
The closed disk is a simple example of a surface with boundary. The boundary of the disc is a circle. The term surface used without qualification refers to surfaces without boundary. In particular, a surface with empty boundary is a surface in the usual sense. A surface with empty boundary which is compact is known as a 'closed' surface.
The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. The real projective space RP n is a closed n-dimensional manifold. The complex projective space CP n is a closed 2n-dimensional manifold. [1] A line is not closed because it is not
Unit disks are special cases of disks and unit balls; as such, they contain the interior of the unit circle and, in the case of the closed unit disk, the unit circle itself. Without further specifications, the term unit disk is used for the open unit disk about the origin, (), with respect to the standard Euclidean metric.
In particular, a ball (open or closed) always includes p itself, since the definition requires r > 0. A unit ball (open or closed) is a ball of radius 1. A ball in a general metric space need not be round. For example, a ball in real coordinate space under the Chebyshev distance is a hypercube, and a ball under the taxicab distance is a cross ...
A non-closed curve may also be called an open curve. If the domain of a topological curve is a closed and bounded interval = [,], the curve is called a path, also known as topological arc (or just arc). A curve is simple if it is the image of an interval or a circle by an injective continuous function.
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. [1] [2] In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation.