enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, [5] and gave a remarkably accurate approximation of π. [80] [81]

  3. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    The geometric content of the SVD theorem can thus be summarized as follows: for every linear map ⁠: ⁠ one can find orthonormal bases of ⁠ ⁠ and ⁠ ⁠ such that ⁠ ⁠ maps the ⁠ ⁠-th basis vector of ⁠ ⁠ to a non-negative multiple of the ⁠ ⁠-th basis vector of ⁠, ⁠ and sends the leftover basis vectors to zero.

  4. Linear span - Wikipedia

    en.wikipedia.org/wiki/Linear_span

    The cross-hatched plane is the linear span of u and v in both R 2 and R 3, here shown in perspective.. In mathematics, the linear span (also called the linear hull [1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains .

  5. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  6. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    Indeed, the set of orthonormal vectors above shows this: It is an infinite sequence of vectors in the unit ball (i.e., the ball of points with norm less than or equal one). This set is clearly bounded and closed; yet, no subsequence of these vectors converges to anything and consequently the unit ball in is not compact. Intuitively, this is ...

  7. Molien's formula - Wikipedia

    en.wikipedia.org/wiki/Molien's_formula

    Here, is the subspace of that consists of all vectors fixed by all elements of G; i.e., invariant forms of degree n. Thus, the dimension of it is the number of invariants of degree n. If G is a compact group, the similar formula holds in terms of Haar measure.

  8. Riemann series theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_series_theorem

    In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.

  9. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    The proof is the same as for complex-valued series: use the completeness to derive the Cauchy criterion for convergence—a series is convergent if and only if its tails can be made arbitrarily small in norm—and apply the triangle inequality. In particular, for series with values in any Banach space, absolute convergence implies convergence ...