enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hypothalamic–pituitary–thyroid axis - Wikipedia

    en.wikipedia.org/wiki/Hypothalamic–pituitary...

    The TSH, in turn, stimulates the thyroid to produce thyroid hormone until levels in the blood return to normal. Thyroid hormone exerts negative feedback control over the hypothalamus as well as anterior pituitary, thus controlling the release of both TRH from hypothalamus and TSH from anterior pituitary gland. [2]

  3. Thyroid-stimulating hormone - Wikipedia

    en.wikipedia.org/wiki/Thyroid-stimulating_hormone

    The concentration of thyroid hormones (T 3 and T 4) in the blood regulates the pituitary release of TSH; when T 3 and T 4 concentrations are low, the production of TSH is increased, and, conversely, when T 3 and T 4 concentrations are high, TSH production is decreased. This is an example of a negative feedback loop. [5]

  4. Thyroid - Wikipedia

    en.wikipedia.org/wiki/Thyroid

    TSH release in turn is stimulated by thyrotropin releasing hormone (TRH), released in a pulsatile manner from the hypothalamus. [39] The thyroid hormones provide negative feedback to the thyrotropes TSH and TRH: when the thyroid hormones are high, TSH production is suppressed. This negative feedback also occurs when levels of TSH are high ...

  5. Endocrine gland - Wikipedia

    en.wikipedia.org/wiki/Endocrine_gland

    The thyroid hormones increase the rate of cellular metabolism, and include thyroxine (T4) and triiodothyronine (T3). Secretion is stimulated by the thyroid-stimulating hormone, secreted by the anterior pituitary. When thyroid levels are high, there is negative feedback that decreases the amount of Thyroid-stimulating hormone secreted.

  6. Releasing and inhibiting hormones - Wikipedia

    en.wikipedia.org/wiki/Releasing_and_inhibiting...

    For example, thyrotropin-releasing hormone (TRH) is released from the hypothalamus in response to low levels of secretion of thyroid-stimulating hormone (TSH) from the pituitary gland. The TSH in turn is under feedback control by the thyroid hormones T4 and T3. When the level of TSH is too high, they feed back on the brain to shut down the ...

  7. Thyroid hormone receptor - Wikipedia

    en.wikipedia.org/wiki/Thyroid_hormone_receptor

    In a healthy individual, the TR-β2 expressed in the pituitary gland plays a major role in regulating thyroid-stimulating hormone (TSH) levels through negative feedback. TSH stimulates the thyroid to secrete thyroid hormone. Once secreted, thyroid hormone acts on these receptors and inhibits transcription of Tshb. This feedback inhibition stops ...

  8. Endocrine system - Wikipedia

    en.wikipedia.org/wiki/Endocrine_system

    By 50 days of gestation, the medial and lateral anlage have fused together. At 12 weeks of gestation, the fetal thyroid is capable of storing iodine for the production of TRH, TSH, and free thyroid hormone. At 20 weeks, the fetus is able to implement feedback mechanisms for the production of thyroid hormones.

  9. Hypothyroidism - Wikipedia

    en.wikipedia.org/wiki/Hypothyroidism

    The hypothalamus secretes TRH (green), which stimulates the pituitary gland to produce TSH (red). This, in turn, stimulates the production of thyroxine by the thyroid (blue). Thyroxine levels decrease TRH and TSH production by a negative feedback process. Thyroid hormone is required for the normal functioning of numerous tissues in the body.