Search results
Results from the WOW.Com Content Network
The memorylessness property asserts that the number of previously failed trials has no effect on the number of future trials needed for a success. Geometric random variables can also be defined as taking values in N 0 {\displaystyle \mathbb {N} _{0}} , which describes the number of failed trials before the first success in a sequence of ...
The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .
Suppose that one starts with $10, and one wagers $1 on an unending, fair, coin toss indefinitely, or until all of the money is lost. If represents the number of dollars one has after n tosses, with =, then the sequence {:} is a Markov process. If one knows that one has $12 now, then it would be expected that with even odds, one will either have ...
For instance, =,, could be defined to represent the state where there is one quarter, zero dimes, and five nickels on the table after 6 one-by-one draws. This new model could be represented by 6 × 6 × 6 = 216 {\displaystyle 6\times 6\times 6=216} possible states, where each state represents the number of coins of each type (from 0 to 5) that ...
A memoryless source is one in which each message is an independent identically distributed random variable, whereas the properties of ergodicity and stationarity impose less restrictive constraints. All such sources are stochastic. These terms are well studied in their own right outside information theory.
For example, if the renewal process is modelling the numbers of breakdown of different machines, then the holding time represents the time between one machine breaking down before another one does. The Poisson process is the unique renewal process with the Markov property , [ 1 ] as the exponential distribution is the unique continuous random ...
Nevertheless, one can still say that some classes of infinite sequences of coin flips are far more likely than others, this is given by the asymptotic equipartition property. To conclude the formal definition, a Bernoulli process is then given by the probability triple ( Ω , B , P ) {\displaystyle (\Omega ,{\mathcal {B}},P)} , as defined above.
(This formula is sometimes called the Hartley function.) This is the maximum possible rate of information that can be transmitted with that alphabet. (The logarithm should be taken to a base appropriate for the unit of measurement in use.) The absolute rate is equal to the actual rate if the source is memoryless and has a uniform distribution.