Search results
Results from the WOW.Com Content Network
Conversely, by a differentiation theorem of Lebesgue, the jump function f is uniquely determined by the properties: [14] (1) being non-decreasing and non-positive; (2) having given jump data at its points of discontinuity x n; (3) satisfying the boundary condition f (a) = 0; and (4) having zero derivative almost everywhere.
The set of all points of discontinuity of a function may be a discrete set, a dense set, or even the entire domain of the function. The oscillation of a function at a point quantifies these discontinuities as follows: in a removable discontinuity, the distance that the value of the function is off by is the oscillation;
For a function f, if its second derivative f″(x) exists at x 0 and x 0 is an inflection point for f, then f″(x 0) = 0, but this condition is not sufficient for having a point of inflection, even if derivatives of any order exist. In this case, one also needs the lowest-order (above the second) non-zero derivative to be of odd order (third ...
At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true ...
In mathematics, the Dirichlet–Jordan test gives sufficient conditions for a complex-valued, periodic function to be equal to the sum of its Fourier series at a point of continuity. Moreover, the behavior of the Fourier series at points of discontinuity is determined as well (it is the midpoint of the values of the discontinuity).
A critical point of such a curve, for the projection parallel to the y-axis (the map (x, y) → x), is a point of the curve where (,) = This means that the tangent of the curve is parallel to the y -axis, and that, at this point, g does not define an implicit function from x to y (see implicit function theorem ).
is continuous at every irrational number, so its points of continuity are dense within the real numbers. Proof of continuity at irrational arguments Since f {\displaystyle f} is periodic with period 1 {\displaystyle 1} and 0 ∈ Q , {\displaystyle 0\in \mathbb {Q} ,} it suffices to check all irrational points in I = ( 0 , 1 ) . {\displaystyle I ...
The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.