Search results
Results from the WOW.Com Content Network
A pressure outlet boundary condition is used at exit of the settling chamber where pressure at outlet is set to zero for gauge pressure. It is always possible to predict the entire flow field by meshing whole fluid domain; however simulation for the prediction of entire flow field using symmetry boundary condition.
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.
For example, functional slope design considers the critical slip surface to be the location where that has the lowest value of factor of safety from a range of possible surfaces. A wide variety of slope stability software use the limit equilibrium concept with automatic critical slip surface determination.
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition (zero velocity at the wall). The flow velocity then monotonically increases above the surface until ...
Mathematically, the Slip factor denoted by 'σ' is defined as the ratio of the actual & ideal values of the whirl velocity components at the exit of the impeller. The ideal values can be calculated using an analytical approach while the actual values should be observed experimentally.
The standard way to calculate the T-matrix is the null-field method, which relies on the Stratton–Chu equations. [6] They basically state that the electromagnetic fields outside a given volume can be expressed as integrals over the surface enclosing the volume involving only the tangential components of the fields on the surface.
The boundary conditions usually model supports, but they can also model point loads, distributed loads and moments. The support or displacement boundary conditions are used to fix values of displacement and rotations (/) on the boundary. Such boundary conditions are also called Dirichlet boundary conditions.
This is done by assuming conditions at the boundaries which are physically correct and numerically solvable in finite time. In some cases, the boundary conditions resume to a simple interface condition. The most usual and simple example is a fully reflecting (electric wall) boundary - the outer medium is considered as a perfect conductor.