Search results
Results from the WOW.Com Content Network
First-order approximation is the term scientists use for a slightly better answer. [3] Some simplifying assumptions are made, and when a number is needed, an answer with only one significant figure is often given ("the town has 4 × 10 3, or four thousand, residents"). In the case of a first-order approximation, at least one number given is exact.
Approximation is a key word generally employed within the title of a directive, for example the Trade Marks Directive of 16 December 2015 serves "to approximate the laws of the Member States relating to trade marks". [11] The European Commission describes approximation of law as "a unique obligation of membership in the European Union". [10]
In numerical analysis, order of accuracy quantifies the rate of convergence of a numerical approximation of a differential equation to the exact solution. Consider u {\displaystyle u} , the exact solution to a differential equation in an appropriate normed space ( V , | | | | ) {\displaystyle (V,||\ ||)} .
The order of accuracy of the approximation takes the usual form ( )) (or ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=First-order_approximation&oldid=1233857633"
In mathematics and other formal sciences, first-order or first order most often means either: " linear " (a polynomial of degree at most one), as in first-order approximation and other calculus uses, where it is contrasted with "polynomials of higher degree", or
In mathematics, approximation theory is concerned with how functions can best be approximated with simpler functions, and with quantitatively characterizing the errors introduced thereby. What is meant by best and simpler will depend on the application.
A quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. Numerical integration methods can generally be described as combining evaluations of the integrand to get an approximation to the integral.