enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    These values can be calculated evaluating the quantile function (also known as "inverse CDF" or "ICDF") of the chi-squared distribution; [24] e. g., the χ 2 ICDF for p = 0.05 and df = 7 yields 2.1673 ≈ 2.17 as in the table above, noticing that 1 – p is the p-value from the table.

  3. Chi distribution - Wikipedia

    en.wikipedia.org/wiki/Chi_distribution

    The chi distribution has one positive integer parameter , which specifies the degrees of freedom (i.e. the number of random variables ). The most familiar examples are the Rayleigh distribution (chi distribution with two degrees of freedom ) and the Maxwell–Boltzmann distribution of the molecular speeds in an ideal gas (chi distribution with ...

  4. Chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_test

    Chi-squared distribution, showing χ 2 on the x-axis and p-value (right tail probability) on the y-axis.. A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large.

  5. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...

  6. Inverse-chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse-chi-squared...

    In probability and statistics, the inverse-chi-squared distribution (or inverted-chi-square distribution [1]) is a continuous probability distribution of a positive-valued random variable. It is closely related to the chi-squared distribution. It is used in Bayesian inference as conjugate prior for the variance of the normal distribution. [2]

  7. Noncentral chi distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_chi_distribution

    If are k independent, normally distributed random variables with means and variances , then the statistic = = is distributed according to the noncentral chi distribution. The noncentral chi distribution has two parameters: which specifies the number of degrees of freedom (i.e. the number of ), and which is related to the mean of the random variables b

  8. Generalized chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_chi-squared...

    In probability theory and statistics, the generalized chi-squared distribution (or generalized chi-square distribution) is the distribution of a quadratic form of a multinormal variable (normal vector), or a linear combination of different normal variables and squares of normal variables.

  9. Scaled inverse chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Scaled_inverse_chi-squared...

    The scaled inverse chi-squared distribution also has a particular use in Bayesian statistics. Specifically, the scaled inverse chi-squared distribution can be used as a conjugate prior for the variance parameter of a normal distribution. The same prior in alternative parametrization is given by the inverse-gamma distribution.