enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Graphs of y = b x for various bases b: base 10, base e, base 2, base ⁠ 1 / 2 ⁠. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

  3. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...

  4. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    The Erdős–Moser equation, + + + = (+) where m and k are positive integers, is conjectured to have no solutions other than 1 1 + 2 1 = 3 1. The sums of three cubes cannot equal 4 or 5 modulo 9, but it is unknown whether all remaining integers can be expressed in this form.

  5. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.

  6. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = ⁠ 1 / 6 ⁠, B 4 = ⁠− + 1 / 30 ⁠, and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]

  7. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    In 2017, it was proven [15] that there exists a unique function F which is a solution of the equation F(z + 1) = exp(F(z)) and satisfies the additional conditions that F(0) = 1 and F(z) approaches the fixed points of the logarithm (roughly 0.318 ± 1.337i) as z approaches ±i∞ and that F is holomorphic in the whole complex z-plane, except the ...

  8. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken. Values of 4 ↑ n b {\displaystyle 4\uparrow ^{n}b} = H n + 2 ( 4 , b ) {\displaystyle H_{n+2}(4,b)} = 4 [ n + 2 ] b {\displaystyle 4[n+2]b} = 4 → b → n

  9. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .