Search results
Results from the WOW.Com Content Network
The sum of squares is not factorable. The squared Euclidean distance between two points, equal to the sum of squares of the differences between their coordinates. Heron's formula for the area of a triangle can be re-written as using the sums of squares of a triangle's sides (and the sums of the squares of squares)
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
In number theory, the sum of squares function is an arithmetic function that gives the number of representations for a given positive integer n as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the numbers being squared are counted as different. It is denoted by rk(n).
Hartigan and Wong's method [9] provides a variation of k-means algorithm which progresses towards a local minimum of the minimum sum-of-squares problem with different solution updates. The method is a local search that iteratively attempts to relocate a sample into a different cluster as long as this process improves the objective function ...
1. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares. This is a well-known property, based on the identity. due to Diophantus. 2. If a number which is a sum of two squares is divisible by a prime which is a sum of two squares, then the quotient is a sum of two squares.
Sum-of-squares optimization. A sum-of-squares optimization program is an optimization problem with a linear cost function and a particular type of constraint on the decision variables. These constraints are of the form that when the decision variables are used as coefficients in certain polynomials, those polynomials should have the polynomial ...
The explained sum of squares (ESS) is the sum of the squares of the deviations of the predicted values from the mean value of a response variable, in a standard regression model — for example, y i = a + b 1 x 1i + b 2 x 2i + ... + ε i, where y i is the i th observation of the response variable, x ji is the i th observation of the j th ...
Residual sum of squares. In statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation ...