Search results
Results from the WOW.Com Content Network
In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: [1] where. = shear strain. In engineering , elsewhere. is the initial length of the area.
The shear modulus or modulus of rigidity (G or Lamé second parameter) describes an object's tendency to shear (the deformation of shape at constant volume) when acted upon by opposing forces; it is defined as shear stress over shear strain. The shear modulus is part of the derivation of viscosity.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.
In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force. When a paper is cut with scissors ...
In the isotropic case, the stiffness tensor may be written: [citation needed] = + (+) where is the Kronecker delta, K is the bulk modulus (or incompressibility), and is the shear modulus (or rigidity), two elastic moduli. If the medium is inhomogeneous, the isotropic model is sensible if either the medium is piecewise-constant or weakly ...
Although the shear modulus, μ, must be positive, the Lamé's first parameter, λ, can be negative, in principle; however, for most materials it is also positive. The parameters are named after Gabriel Lamé. They have the same dimension as stress and are usually given in SI unit of stress [Pa].
Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]
Stress-strain relation in a linear elastic material. The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [1][2] Other names are elastic modulus tensor and stiffness tensor. Common symbols include and . The defining equation can be written as.