Search results
Results from the WOW.Com Content Network
n ! {\displaystyle n!} In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: For example, The value of 0! is 1, according to the convention for an empty product.
Definition. The factorial number system is a mixed radix numeral system: the i -th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i− 1)! (its place value). 7! 6!
Double factorial. The fifteen different chord diagrams on six points, or equivalently the fifteen different perfect matchings on a six-vertex complete graph. These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that ...
In this article, the symbol () is used to represent the falling factorial, and the symbol () is used for the rising factorial. These conventions are used in combinatorics , [ 4 ] although Knuth 's underline and overline notations x n _ {\displaystyle x^{\underline {n}}} and x n ¯ {\displaystyle x^{\overline {n}}} are increasingly popular.
Stirling's approximation. Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of .
(resulting in 24 factorial primes - the prime 2 is repeated) No other factorial primes are known as of October 2022 [update] . When both n ! + 1 and n ! − 1 are composite , there must be at least 2 n + 1 consecutive composite numbers around n !, since besides n ! ± 1 and n ! itself, also, each number of form n ! ± k is divisible by k for 2 ...
List of mathematical series. This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. is a Bernoulli polynomial. is an Euler number. is the Riemann zeta function. is the gamma function. is a polygamma function. is a polylogarithm.
Factorion. In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. [1][2][3] The name factorion was coined by the author Clifford A. Pickover. [4]