Search results
Results from the WOW.Com Content Network
v. t. e. In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function.
t. e. In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point.
1 Proof. 2 Convergence. 3 Accelerated series. 4 History. 5 See ... traditionally called Gregory's series, is the Taylor series expansion at the origin of the ...
Taylor expansions for the moments of functions of random variables. In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the ...
The Taylor expansion would be: + where / denotes the partial derivative of f k with respect to the i-th variable, evaluated at the mean value of all components of vector x. Or in matrix notation , f ≈ f 0 + J x {\displaystyle \mathrm {f} \approx \mathrm {f} ^{0}+\mathrm {J} \mathrm {x} \,} where J is the Jacobian matrix .
Lagrange inversion theorem. In mathematical analysis, the Lagrange inversion theorem, also known as the Lagrange–Bürmann formula, gives the Taylor series expansion of the inverse function of an analytic function. Lagrange inversion is a special case of the inverse function theorem.
Itô's lemma. Identity in Itô calculus analogous to the chain rule. In mathematics, Itô's lemma or Itô's formula (also called the Itô–Doeblin formula, especially in the French literature) is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process.
The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − θ 2 2 {\textstyle 1-{\frac {\theta ^{2}}{2}}} .