Ads
related to: repeating decimals fraction worksheet printablegenerationgenius.com has been visited by 100K+ users in the past month
- K-8 Math Videos & Lessons
Used in 20,000 Schools
Loved by Students & Teachers
- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- Loved by Teachers
Check out some of the great
feedback from teachers & parents.
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- K-8 Math Videos & Lessons
Search results
Results from the WOW.Com Content Network
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
In mathematics, Midy's theorem, named after French mathematician E. Midy, [1] is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period (sequence A028416 in the OEIS). If the period of the decimal representation of a/p is 2n, so that
Let x = the repeating decimal: x = 0.1523 987; Multiply both sides by the power of 10 just great enough (in this case 10 4) to move the decimal point just before the repeating part of the decimal number: 10,000x = 1,523. 987; Multiply both sides by the power of 10 (in this case 10 3) that is the same as the number of places that repeat:
A vinculum can indicate a line segment where A and B are the endpoints: ¯. A vinculum can indicate the repetend of a repeating decimal value: . 1 ⁄ 7 = 0. 142857 = 0.1428571428571428571...
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.
Ads
related to: repeating decimals fraction worksheet printablegenerationgenius.com has been visited by 100K+ users in the past month