Search results
Results from the WOW.Com Content Network
The term "Maxwell's equations" is often also used for equivalent alternative formulations. Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics.
The electromagnetism uniqueness theorem states the uniqueness (but not necessarily the existence) of a solution to Maxwell's equations, if the boundary conditions provided satisfy the following requirements: [1] [2] At =, the initial values of all fields (E, H, B and D) everywhere (in the entire volume considered) is specified;
An elegant and intuitive way to formulate Maxwell's equations is to use complex line bundles or a principal U(1)-bundle, on the fibers of which U(1) acts regularly. The principal U(1)- connection ∇ on the line bundle has a curvature F = ∇ 2 , which is a two-form that automatically satisfies d F = 0 and can be interpreted as a field strength.
Eighteen of Maxwell's twenty original equations can be vectorized into six equations, labeled to below, each of which represents a group of three original equations in component form. The 19th and 20th of Maxwell's component equations appear as and below, making a total of eight vector equations. These are listed below in Maxwell's original ...
This equation is completely coordinate- and metric-independent and says that the electromagnetic flux through a closed two-dimensional surface in space–time is topological, more precisely, depends only on its homology class (a generalization of the integral form of Gauss law and Maxwell–Faraday equation, as the homology class in Minkowski ...
Even after such symmetry reductions, the reduced system of equations is often difficult to solve. For example, the Ernst equation is a nonlinear partial differential equation somewhat resembling the nonlinear Schrödinger equation (NLS). But recall that the conformal group on Minkowski spacetime is the symmetry group of the Maxwell equations.
Using exterior algebra to construct a 2-form F from electric and magnetic fields, and the implied dual 2-form ★F, the equations dF = 0 and d★F = J (current) express Maxwell's theory with a differential form approach.
Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...