Search results
Results from the WOW.Com Content Network
Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [22] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.
Thus, for example, if Q was 50 units, T 1 was initially 100 degrees, and T 2 was 1 degree, then the entropy change for this process would be 49.5. Hence, entropy increased for this process, the process took a certain amount of "time", and one can correlate entropy increase with the passage of time.
The von Neumann entropy formula is an extension of the Gibbs entropy formula to the quantum mechanical case. It has been shown [ 1 ] that the Gibbs Entropy is equal to the classical "heat engine" entropy characterized by d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\!} , and the generalized Boltzmann distribution is a sufficient and ...
In the case of an ideal gas, the heat capacity is constant and the ideal gas law PV = nRT gives that α V V = V/T = nR/p, with n the number of moles and R the molar ideal-gas constant. So, the molar entropy of an ideal gas is given by (,) = (,) + . In this expression C P now is the molar heat capacity. The entropy of inhomogeneous ...
When measuring entropy using the natural logarithm (ln), the unit of information entropy is called a "nat", but when it is measured using the base-2 logarithm, the unit of information entropy is called a "shannon" (alternatively, "bit"). This is just a difference in units, much like the difference between inches and centimeters.
In a stretched out piece of rubber, for example, the arrangement of the molecules of its structure has an "ordered" distribution and has zero entropy, while the "disordered" kinky distribution of the atoms and molecules in the rubber in the non-stretched state has positive entropy. Similarly, in a gas, the order is perfect and the measure of ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
However, in the thermodynamic limit (i.e. in the limit of infinitely large system size), the specific entropy (entropy per unit volume or per unit mass) does not depend on . The entropy is thus a measure of the uncertainty about exactly which quantum state the system is in, given that we know its energy to be in some interval of size δ E ...