enow.com Web Search

  1. Ad

    related to: isentropic flow chart

Search results

  1. Results from the WOW.Com Content Network
  2. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    The gas flow is along a straight line from gas inlet to exhaust gas exit. The gas flow behavior is compressible. There are numerous applications where a steady, uniform, isentropic flow is a good approximation to the flow in conduits. These include the flow through a jet engine, through the nozzle of a rocket, from a broken gas line, and past ...

  3. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    In fluid dynamics, an isentropic flow is a fluid flow that is both adiabatic and reversible. That is, no heat is added to the flow, and no energy transformations occur due to friction or dissipative effects. For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline.

  4. Normal shock tables - Wikipedia

    en.wikipedia.org/wiki/Normal_shock_tables

    In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number, the post-shock Mach number can be calculated along with the pressure, density, temperature, and stagnation pressure ratios.

  5. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for isentropic flow, so the conditions at point 1 move down vertically to point 3.

  6. Rankine cycle - Wikipedia

    en.wikipedia.org/wiki/Rankine_cycle

    The input energy required can be easily calculated graphically, using an enthalpy–entropy chart (h–s chart, or Mollier diagram), or numerically, using steam tables or software. Process 3–4: Isentropic expansion: The dry saturated vapour expands through a turbine, generating power. This decreases the temperature and pressure of the vapour ...

  7. Enthalpy–entropy chart - Wikipedia

    en.wikipedia.org/wiki/Enthalpy–entropy_chart

    A vertical line in the h–s chart represents an isentropic process. The process 3–4 in a Rankine cycle is isentropic when the steam turbine is said to be an ideal one. So the expansion process in a turbine can be easily calculated using the h–s chart when the process is considered to be ideal (which is the case normally when calculating ...

  8. Prandtl–Meyer function - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Meyer_function

    In aerodynamics, the Prandtl–Meyer function describes the angle through which a flow turns isentropically from sonic velocity (M=1) to a Mach (M) number greater than 1. The maximum angle through which a sonic ( M = 1) flow can be turned around a convex corner is calculated for M = ∞ {\displaystyle \infty } .

  9. Degree of reaction - Wikipedia

    en.wikipedia.org/wiki/Degree_of_Reaction

    And 2 to 3s is the isentropic process from rotor inlet at 2 to rotor outlet at 3. The velocity triangle [2] (Figure 2.) for the flow process within the stage represents the change in fluid velocity as it flows first in the stator or the fixed blades and then through the rotor or the moving blades. Due to the change in velocities there is a ...

  1. Ad

    related to: isentropic flow chart