Search results
Results from the WOW.Com Content Network
Optical coherence tomogram of a fingertip. It is possible to observe the sweat glands, having "corkscrew appearance" Interferometric reflectometry of biological tissue, especially of the human eye using short-coherence-length light (also referred to as partially-coherent, low-coherence, or broadband, broad-spectrum, or white light) was investigated in parallel by multiple groups worldwide ...
Humans have a slightly over 210-degree forward-facing horizontal arc of their visual field (i.e. without eye movements), [4] [5] [6] (with eye movements included it is slightly larger, as you can try for yourself by wiggling a finger on the side), while some birds have a complete or nearly complete 360-degree visual field. The vertical range of ...
The pupil of the human eye can range in size from 2 mm to over 8 mm to adapt to the environment. The human eye can detect a luminance from 10 −6 cd/m 2, or one millionth (0.000001) of a candela per square meter to 10 8 cd/m 2 or one hundred million (100,000,000) candelas per square meter.
Doppler Optical Coherence Tomography is an extension of OCT, where it combines the Doppler effect principle to achieve high resolution tomographic images in biological tissues. And because of its high resolution and velocity sensitivity, there are many applications in the medical field. The basic phenomenon of Doppler OCT can be explained below.
Laser Doppler imaging (LDI) is an imaging method that uses a laser beam to image live tissue. When the laser light reaches the tissue, the moving blood cells generate Doppler components in the reflected (backscattered) light. The light that comes back is detected using a photodiode that converts it into an electrical signal.
Optical tomography is a form of computed tomography that creates a digital volumetric model of an object by reconstructing images made from light transmitted and scattered through an object. [1] Optical tomography is used mostly in medical imaging research. Optical tomography in industry is used as a sensor of thickness and internal structure ...
SARs produce a two-dimensional (2-D) image. One dimension in the image is called range and is a measure of the "line-of-sight" distance from the radar to the object. Range is determined by measuring the time from transmission of a pulse to receiving the echo from a target. Also, range resolution is determined by the transmitted pulse width.
Range imaging is the name for a collection of techniques that are used to produce a 2D image showing the distance to points in a scene from a specific point, normally associated with some type of sensor device. The resulting range image has pixel values that correspond to the distance. If the sensor that is used to produce the range image is ...