enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time-resolved spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Time-resolved_spectroscopy

    In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.

  3. Monte Carlo method for photon transport - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method_for...

    The required parameters are the absorption coefficient, the scattering coefficient, and the scattering phase function. (If boundaries are considered the index of refraction for each medium must also be provided.) Time-resolved responses are found by keeping track of the total elapsed time of the photon's flight using the optical path length ...

  4. Job plot - Wikipedia

    en.wikipedia.org/wiki/Job_plot

    An observable that is proportional to complex formation (such as absorption signal or enzymatic activity) is plotted against the mole fractions of these two components. χ A is the mole fraction of compound A and P is the physical property being measured to understand complex formation. This property is most oftentimes UV absorbance. [2]

  5. Fourier-transform spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fourier-transform_spectroscopy

    In general, the goal of absorption spectroscopy is to measure how well a sample absorbs or transmits light at each different wavelength. Although absorption spectroscopy and emission spectroscopy are different in principle, they are closely related in practice; any technique for emission spectroscopy can also be used for absorption spectroscopy.

  6. Elliott formula - Wikipedia

    en.wikipedia.org/wiki/Elliott_formula

    One of the most accurate theories of semiconductor absorption and photoluminescence is provided by the SBEs and SLEs, respectively. Both of them are systematically derived starting from the many-body/quantum-optical system Hamiltonian and fully describe the resulting quantum dynamics of optical and quantum-optical observables such as optical polarization (SBEs) and photoluminescence intensity ...

  7. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    The graphs determine the local equations of motion, while the allowed large-scale configurations describe non-perturbative physics. But because Feynman propagators are nonlocal in time, translating a field process to a coherent particle language is not completely intuitive, and has only been explicitly worked out in certain special cases.

  8. Photoluminescence - Wikipedia

    en.wikipedia.org/wiki/Photoluminescence

    Time-resolved photoluminescence (TRPL) is a method where the sample is excited with a light pulse and then the decay in photoluminescence with respect to time is measured. This technique is useful for measuring the minority carrier lifetime of III-V semiconductors like gallium arsenide .

  9. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    In 1905, "Einstein believed that Planck's theory could not be made to agree with the idea of light quanta, a mistake he corrected in 1906." [133] Contrary to Planck's beliefs of the time, Einstein proposed a model and formula whereby light was emitted, absorbed, and propagated in free space in energy quanta localized in points of space. [132]