enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface.

  3. Low-cycle fatigue - Wikipedia

    en.wikipedia.org/wiki/Low-cycle_fatigue

    Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.

  4. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]

  5. Static fatigue - Wikipedia

    en.wikipedia.org/wiki/Static_fatigue

    Static fatigue describes how prolonged and constant cyclic stress weakens a material until it breaks apart, which is called failure. [1] Static fatigue is sometimes called "delayed fracture". [ 2 ] The damage occurs at a lower stress level than the stress level needed to create a normal tensile fracture. [ 2 ]

  6. Thermo-mechanical fatigue - Wikipedia

    en.wikipedia.org/wiki/Thermo-Mechanical_Fatigue

    There are three mechanisms acting in thermo-mechanical fatigue Creep is the flow of material at high temperatures; Fatigue is crack growth and propagation due to repeated loading; Oxidation is a change in the chemical composition of the material due to environmental factors. The oxidized material is more brittle and prone to crack creation.

  7. Fatigue limit - Wikipedia

    en.wikipedia.org/wiki/Fatigue_limit

    The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1] Some metals such as ferrous alloys and titanium alloys have a distinct limit, [ 2 ] whereas others such as aluminium and copper do not and will eventually fail even from ...

  8. Cyclic stress - Wikipedia

    en.wikipedia.org/wiki/Cyclic_stress

    When cyclic stresses are applied to a material, even though the stresses do not cause plastic deformation, the material may fail due to fatigue. Fatigue failure is typically modeled by decomposing cyclic stresses into mean and alternating components. Mean stress is the time average of the principal stress.

  9. Material failure theory - Wikipedia

    en.wikipedia.org/wiki/Material_failure_theory

    In materials science, material failure is the loss of load carrying capacity of a material unit. This definition introduces to the fact that material failure can be examined in different scales, from microscopic, to macroscopic. In structural problems, where the structural response may be beyond the initiation of nonlinear material behaviour ...