Search results
Results from the WOW.Com Content Network
English: Mandelbrot set. Initial image of a zoom sequence: Mandelbrot set with continuously colored environment. Coordinates of the center: Re(c) = -.7, Im(c) = 0; Horizontal diameter of the image: 3.076,9; Created by Wolfgang Beyer with the program Ultra Fractal 3. Uploaded by the creator.
This movie was generated by Fract, a web based zoomer for the Mandelbrot Set fractal written by Yannick Gingras. It is part of the Fract Movie Pack 1. Fract allows visitors to vote for the most interesting regions. The Movie Pack 1 is a snapshot of the
Kalles Fraktaler is a free Windows-based fractal zoom computer program used for zooming into fractals such as the Mandelbrot set and the Burning Ship fractal at very high speed, utilizing Perturbation and Series Approximation. [1]
The quaternion (4-dimensional) Mandelbrot set is simply a solid of revolution of the 2-dimensional Mandelbrot set (in the j-k plane), and is therefore uninteresting to look at. [43] Taking a 3-dimensional cross section at d = 0 ( q = a + b i + c j + d k ) {\displaystyle d=0\ (q=a+bi+cj+dk)} results in a solid of revolution of the 2-dimensional ...
English: This video is comprised of frames illustrating each of the powers of the mandelbrot set from 0.05 to 2, incrementing by 0.05 with each iteration. Date 14 May 2014, 11:41:42
Support As Set. An amazing set of pictures. Nautica Shad e s 13:51, 11 December 2006 (UTC) Promoted Image:Mandel zoom 00 mandelbrot set.jpg. This is an unusual nom; I'll stick the FP tag on all the images but only put the first one on the FP and FPT pages. I'll also replace Image:Mandelbrot set 2500px.png with this one.
Every pixel that contains a point of the Mandelbrot set is colored black. Every pixel that is colored black is close to the Mandelbrot set. Exterior distance estimate may be used to color whole complement of Mandelbrot set. The upper bound b for the distance estimate of a pixel c (a complex number) from the Mandelbrot set is given by [6] [7] [8]
Original - Mandelbrot zoom in. Reason Simply an epic animation and a fantastic representation of the multiple layers of complexity and chaos that make up the Mandelbrot set. The user Slaunger suggested that a scaled up version of an earlier animation, made by user Zom-B would probably be worthy of being a featured image.