Search results
Results from the WOW.Com Content Network
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
There is a large theory of special functions which developed out of statistics and mathematical physics. A modern, abstract point of view contrasts large function spaces , which are infinite-dimensional and within which most functions are 'anonymous', with special functions picked out by properties such as symmetry , or relationship to harmonic ...
Graph of a linear function Graph of a polynomial function, here a quadratic function. Graph of two trigonometric functions: sine and cosine. A real function is a real-valued function of a real variable, that is, a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval.
ch(G) cannot be bounded in terms of chromatic number in general, that is, there is no function f such that ch(G) ≤ f(χ(G)) holds for every graph G. In particular, as the complete bipartite graph examples show, there exist graphs with χ(G) = 2 but with ch(G) arbitrarily large. [2] ch(G) ≤ χ(G) ln(n) where n is the number of vertices of G ...
An example of non-compact is the real line, which allows the discontinuous function with closed graph () = {,. Also, closed linear operators in functional analysis (linear operators with closed graphs) are typically not continuous.
The complete bipartite graph, is an example of a bicubic graph. In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bipartite graph.