Search results
Results from the WOW.Com Content Network
The degradative process of a catabolic pathway provides the energy required to conduct the biosynthesis of an anabolic pathway. [6] In addition to the two distinct metabolic pathways is the amphibolic pathway, which can be either catabolic or anabolic based on the need for or the availability of energy.
Catabolism (/ k ə ˈ t æ b ə l ɪ z ə m /) is the set of metabolic pathways that breaks down molecules into smaller units that are either oxidized to release energy or used in other anabolic reactions. [1]
Thiolases are a family of evolutionarily related enzymes.Two different types of thiolase [4] [5] [6] are found both in eukaryotes and in prokaryotes: acetoacetyl-CoA thiolase (EC 2.3.1.9) and 3-ketoacyl-CoA thiolase (EC 2.3.1.16). 3-ketoacyl-CoA thiolase (also called thiolase I) has a broad chain-length specificity for its substrates and is involved in degradative pathways such as fatty acid ...
The citric acid cycle (Krebs cycle) is a good example of an amphibolic pathway because it functions in both the degradative (carbohydrate, protein, and fatty acid) and biosynthetic processes. [2] The citric acid cycle occurs on the cytosol of bacteria and within the mitochondria of eukaryotic cells.
Fatty acid degradation is the process in which fatty acids are broken down into their metabolites, in the end generating acetyl-CoA, the entry molecule for the citric acid cycle, the main energy supply of living organisms, including bacteria and animals.
A salvage pathway is a pathway in which a biological product is produced from intermediates in the degradative pathway of its own or a similar substance. The term often refers to nucleotide salvage in particular, in which nucleotides ( purine and pyrimidine ) are synthesized from intermediates in their degradative pathway.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Transamination is a chemical reaction that transfers an amino group to a ketoacid to form new amino acids.This pathway is responsible for the deamination of most amino acids. This is one of the major degradation pathways which convert essential amino acids to non-essential amino acids (amino acids that can be synthesized de novo by the organism).