Search results
Results from the WOW.Com Content Network
Two types of gradients, with blue arrows to indicate the direction of the gradient. Light areas indicate higher pixel values A blue and green color gradient. An image gradient is a directional change in the intensity or color in an image. The gradient of the image is one of the fundamental building blocks in image processing.
The gradient is obtained from an existing image and modified for image editing purposes. Various operators, such as finite difference or Sobel, can be used to find the gradient of a given image. This gradient can then be manipulated directly to produce several different effects when the resulting image is solved for.
Apply Gaussian filter to smooth the image in order to remove the noise; Find the intensity gradients of the image; Apply gradient magnitude thresholding or lower bound cut-off suppression to get rid of spurious response to edge detection; Apply double threshold to determine potential edges
The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.
Reconstructive methods use horizontal gradients or vertical gradients to build a curve and find the peak of the curve as the sub-pixel edge. Partial area effect methods are based on the hypothesis that each pixel value depends on the area at both sides of the edge inside that pixel, producing accurate individual estimation for every edge pixel.
The images below illustrate the change in the direction of the gradient on a grayscale circle. When the sign of and are the same the gradient's angle is positive, and negative when different. In the example below the red and yellow colors on the edge of the circle indicate positive angles, and the blue and cyan colors indicate negative angles.
In mathematical morphology and digital image processing, a morphological gradient is the difference between the dilation and the erosion of a given image. It is an image where each pixel value (typically non-negative) indicates the contrast intensity in the close neighborhood of that pixel.
Mathematically, the gradient of a two-variable function (here the image intensity function) is at each image point a 2D vector with the components given by the derivatives in the horizontal and vertical directions. At each image point, the gradient vector points in the direction of largest possible intensity increase, and the length of the ...