Search results
Results from the WOW.Com Content Network
Since x 2 represents the area of a square with side of length x, and bx represents the area of a rectangle with sides b and x, the process of completing the square can be viewed as visual manipulation of rectangles. Simple attempts to combine the x 2 and the bx rectangles into a larger square
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 + 2x + 1. One of the important properties of squaring, for numbers as well as in many other mathematical systems, is that (for all numbers x), the square of x is the same as the square of its additive inverse −x.
Denoting the two roots by r 1 and r 2 we distinguish three cases. If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is not zero, and |r 1 | ≠ |r 2 |, the continued fraction converges to the root of maximum modulus (i.e., to the root with the greater absolute value).
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
If two primes which end in 3 or 7 and surpass by 3 a multiple of 4 are multiplied, then their product will be composed of a square and the quintuple of another square. In other words, if p, q are of the form 20k + 3 or 20k + 7, then pq = x 2 + 5y 2. Euler later extended this to the conjecture that
[17] [18] For example, the fraction 1/(x 2 + 1) is not a polynomial, and it cannot be written as a finite sum of powers of the variable x. For polynomials in one variable, there is a notion of Euclidean division of polynomials, generalizing the Euclidean division of integers.
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.