Search results
Results from the WOW.Com Content Network
The auditosensory cortex is the part of the auditory system that is associated with the sense of hearing in humans. It occupies the bilateral primary auditory cortex in the temporal lobe of the mammalian brain. [1] The term is used to describe Brodmann areas 41 and 42 together with the transverse temporal gyrus. [2]
It is yet unclear whether auditory agnosia (also called general auditory agnosia) is a combination of milder disorders, such auditory verbal agnosia (pure word deafness), non-verbal auditory agnosia, amusia and word-meaning deafness, or a mild case of the more severe disorder, cerebral deafness. Typically, a person with auditory agnosia would ...
The superior temporal gyrus also includes Wernicke's area, which (in most people) is located in the left hemisphere. It is the major area involved in the comprehension of language. The superior temporal gyrus is involved in auditory processing, including language, but also has been implicated as a critical structure in social cognition. [2] [3]
The transverse temporal gyrus, also called Heschl's gyrus (/ ˈ h ɛ ʃ əl z ˈ dʒ aɪ r aɪ /) or Heschl's convolutions, is a gyrus found in the area of each primary auditory cortex buried within the lateral sulcus of the human brain, occupying Brodmann areas 41 and 42.
The sensorimotor network (SMN), also known as somatomotor network, is a large-scale brain network that primarily includes somatosensory (postcentral gyrus) and motor (precentral gyrus) regions and extends to the supplementary motor areas (SMA). [1] The auditory cortex may also be included, [2] as well as the visual cortex. [3]
In children, early diagnosis and treatment of impaired auditory system function is an important factor in ensuring that key social, academic and speech/language developmental milestones are met. [43] Impairment of the auditory system can include any of the following: Auditory brainstem response and ABR audiometry test for newborn hearing
The second, the angular gyrus , arches over the posterior end of the superior temporal sulcus, behind which it is continuous with the middle temporal gyrus. In males, the inferior parietal lobule is significantly more voluminous in the left hemisphere compared to the right.
The supramarginal gyrus is located just anterior to the angular gyrus allowing these two structures (which compose the inferior parietal lobule) to form a multimodal complex that receives somatosensory, visual, and auditory inputs from the brain. [7]