Search results
Results from the WOW.Com Content Network
For example, milk sugar (lactose) is a disaccharide made by condensation of one molecule of each of the monosaccharides glucose and galactose, whereas the disaccharide sucrose in sugar cane and sugar beet, is a condensation product of glucose and fructose. Maltose, another common disaccharide, is condensed from two glucose molecules. [7]
Lectins, or proteins that bind carbohydrates, can recognize specific oligosaccharides and provide useful information for cell recognition based on oligosaccharide binding. [citation needed] An important example of oligosaccharide cell recognition is the role of glycolipids in determining blood types.
An oligosaccharide has both a reducing and a non-reducing end. The reducing end of an oligosaccharide is the monosaccharide residue with hemiacetal functionality, thereby capable of reducing the Tollens’ reagent, while the non-reducing end is the monosaccharide residue in acetal form, thus incapable of reducing the Tollens’ reagent. [2]
Compound sugars, also called disaccharides or double sugars, are molecules made of two bonded monosaccharides; common examples are sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (two molecules of glucose). White sugar is a refined form of sucrose. In the body, compound sugars are hydrolysed into simple sugars.
Maltose, with two sugar units, is a disaccharide, which falls under oligosaccharides. Glucose is a hexose : a monosaccharide containing six carbon atoms. The two glucose units are in the pyranose form and are joined by an O-glycosidic bond , with the first carbon (C 1 ) of the first glucose linked to the fourth carbon (C 4 ) of the second ...
Another important disaccharide is lactose found in milk, consisting of a glucose molecule and a galactose molecule. Lactose may be hydrolysed by lactase, and deficiency in this enzyme results in lactose intolerance. When a few (around three to six) monosaccharides are joined, it is called an oligosaccharide (oligo-meaning "few").
The disarmed portion of the disaccharide can then be armed through selective deprotection. The disaccharide can then be coupled to a disarmed sugar. This process can be repeated as many times as necessary to achieve an efficient synthesis of a desired oligosaccharide with minimal loss of material to undesired coupling.
Similar to the disaccharides, each glycosidic bond can be formed between any hydroxyl group on the component monosaccharides. Even if all three component sugars are the same (e.g., glucose ), different bond combinations ( regiochemistry ) and stereochemistry (alpha- or beta-) result in trisaccharides that are diastereoisomers with different ...