enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  3. Automobile drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Automobile_drag_coefficient

    The average modern automobile achieves a drag coefficient of between 0.25 and 0.3. Sport utility vehicles (SUVs), with their typically boxy shapes, typically achieve a Cd=0.35–0.45. The drag coefficient of a vehicle is affected by the shape of body of the vehicle.

  4. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    is the drag coefficient – a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. If the fluid is a liquid, c d {\displaystyle c_{\rm {d}}} depends on the Reynolds number ; if the fluid is a gas, c d {\displaystyle c_{\rm {d}}} depends on both the Reynolds number and the Mach number .

  5. Skin friction drag - Wikipedia

    en.wikipedia.org/wiki/Skin_friction_drag

    Skin friction drag is generally expressed in terms of the Reynolds number, which is the ratio between inertial force and viscous force. Total drag can be decomposed into a skin friction drag component and a pressure drag component, where pressure drag includes all other sources of drag including lift-induced drag. [1]

  6. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    Drag and lift coefficients for the NACA 63 3 618 airfoil. Full curves are lift, dashed drag; red curves have R e = 3·10 6, blue 9·10 6. Coefficients of lift and drag against angle of attack. Curve showing induced drag, parasitic drag and total drag as a function of airspeed. Drag curve for the NACA 63 3 618 airfoil, colour-coded as opposite plot.

  7. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    For an object with well-defined fixed separation points, like a circular disk with its plane normal to the flow direction, the drag coefficient is constant for Re > 3,500. [16] The further the drag coefficient C d is, in general, a function of the orientation of the flow with respect to the object (apart from symmetrical objects like a sphere).

  8. Zero-lift drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Zero-lift_drag_coefficient

    As noted earlier, , =,. The total drag coefficient can be estimated as: = [()], where is the propulsive efficiency, P is engine power in horsepower, sea-level air density in slugs/cubic foot, is the atmospheric density ratio for an altitude other than sea level, S is the aircraft's wing area in square feet, and V is the aircraft's speed in miles per hour.

  9. Cunningham correction factor - Wikipedia

    en.wikipedia.org/wiki/Cunningham_correction_factor

    A n are experimentally determined coefficients. For air (Davies, 1945): [2] A 1 = 1.257 A 2 = 0.400 A 3 = 0.55. The Cunningham correction factor becomes significant when particles become smaller than 15 micrometers, for air at ambient conditions. For sub-micrometer particles, Brownian motion must be taken into account.