enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.

  3. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration ...

  4. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    [note 3] Still further generalization is possible to functions on groups, which, besides the original Fourier transform on R or R n, notably includes the discrete-time Fourier transform (DTFT, group = Z), the discrete Fourier transform (DFT, group = Z mod N) and the Fourier series or circular Fourier transform (group = S 1, the unit circle ≈ ...

  5. Discrete Fourier series - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_series

    In digital signal processing, a discrete Fourier series (DFS) is a Fourier series whose sinusoidal components are functions of discrete time instead of continuous time. A specific example is the inverse discrete Fourier transform (inverse DFT).

  6. Parseval's theorem - Wikipedia

    en.wikipedia.org/wiki/Parseval's_theorem

    where is the discrete-time Fourier transform (DTFT) of and represents the angular frequency (in radians per sample) of . Alternatively, for the discrete Fourier transform (DFT), the relation becomes:

  7. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    That is, it takes a function from the time domain into the frequency domain; it is a decomposition of a function into sinusoids of different frequencies; in the case of a Fourier series or discrete Fourier transform, the sinusoids are harmonics of the fundamental frequency of the function being analyzed.

  8. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    In the latter case, the exponential form of Fourier series synthesizes a discrete-time Fourier transform where variable represents frequency instead of time. In general, the coefficients are determined by analysis of a given function s ( x ) {\displaystyle s(x)} whose domain of definition is an interval of length P , {\displaystyle P ...

  9. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    By a derivation similar to Eq.1, there is an analogous theorem for sequences, such as samples of two continuous functions, where now denotes the discrete-time Fourier transform (DTFT) operator. Consider two sequences u [ n ] {\displaystyle u[n]} and v [ n ] {\displaystyle v[n]} with transforms U {\displaystyle U} and V {\displaystyle V} :