Search results
Results from the WOW.Com Content Network
Within these, it checks for three or four identical pixels. Based on these conditions, the algorithm decides whether to use one of A, B, C, or D, or an interpolation among only these four, for each output pixel. The 2xSaI arbitrary scaler can enlarge any image to any resolution and uses bilinear filtering to interpolate pixels.
Image scaling can be interpreted as a form of image resampling or image reconstruction from the view of the Nyquist sampling theorem.According to the theorem, downsampling to a smaller image from a higher-resolution original can only be carried out after applying a suitable 2D anti-aliasing filter to prevent aliasing artifacts.
An enlargement of a small section of a 1024x768 (VESA XGA) resolution image; the individual pixels are more visible in its scaled form than its normal resolution.A video scaler is a system that converts video signals from one display resolution to another; typically, scalers are used to convert a signal from a lower resolution (such as 480p standard definition) to a higher resolution (such as ...
Huffyuv (or HuffYUV) is a lossless video codec created by Ben Rudiak-Gould which is meant to replace uncompressed YCbCr as a video capture format. The codec can also compress in the RGB color space. "Lossless" means that the output from the decompressor is bit-for-bit identical with the original input to the compressor.
Optionally, a multi-component generation, identical to the JPEG 2000 RCT, is applied. This transformation is a lossless approximation of an RGB to YUV conversion, generating one luma and two chroma channels. Wavelet transformation: Input data is spacially decorrelated by a 5/3 Daubechies wavelet filter. While a five-stage transformation is ...
Display Stream Compression (DSC) is a VESA-developed video compression algorithm designed to enable increased display resolutions and frame rates over existing physical interfaces, and make devices smaller and lighter, with longer battery life. [1]
Lempel–Ziv–Welch (LZW) is a universal lossless data compression algorithm created by Abraham Lempel, Jacob Ziv, and Terry Welch.It was published by Welch in 1984 as an improved implementation of the LZ78 algorithm published by Lempel and Ziv in 1978.
Lossless compression is a class of data compression that allows the original data to be perfectly reconstructed from the compressed data with no loss of information. Lossless compression is possible because most real-world data exhibits statistical redundancy . [ 1 ]