enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    It is a generalisation of the vector form, which becomes particularly useful if more than two objects are involved (such as a rocket between the Earth and the Moon). For two objects (e.g. object 2 is a rocket, object 1 the Earth), we simply write r instead of r 12 and m instead of m 2 and define the gravitational field g(r) as:

  4. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.

  5. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  7. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    The gravitational field equation is [7] = = = | | =, where F is the gravitational force, m is the mass of the test particle, R is the radial vector of the test particle relative to the mass (or for Newton's second law of motion which is a time dependent function, a set of positions of test particles each occupying a particular point in space ...

  8. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    In scientific contexts, mass is the amount of "matter" in an object (though "matter" may be difficult to define), but weight is the force exerted on an object's matter by gravity. [1] At the Earth's surface, an object whose mass is exactly one kilogram weighs approximately 9.81 newtons, the product of its mass and the gravitational field ...

  9. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    Putting the Sun immobile at the origin, when the Earth is moving in an orbit of radius R with velocity v presuming that the gravitational influence moves with velocity c, moves the Sun's true position ahead of its optical position, by an amount equal to vR/c, which is the travel time of gravity from the sun to the Earth times the relative ...