Search results
Results from the WOW.Com Content Network
In electromagnetism, an eddy current (also called Foucault's current) is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes ...
Mesoscale ocean eddies are characterized by currents that flow in a roughly circular motion around the center of the eddy. The sense of rotation of these currents may either be cyclonic or anticyclonic (such as Haida Eddies). Oceanic eddies are also usually made of water masses that are different from those outside the eddy.
Eddy currents flow in closed loops in planes perpendicular to the magnetic field. They have useful applications in eddy current brakes and induction heating systems. However eddy currents induced in the metal magnetic cores of transformers and AC motors and generators are undesirable since they dissipate energy (called core losses) as heat in ...
In the traditional version of eddy current testing an alternating (AC) magnetic field is used to induce eddy currents inside the material to be investigated. If the material contains a crack or flaw which make the spatial distribution of the electrical conductivity nonuniform, the path of the eddy currents is perturbed and the impedance of the ...
Joule immersed a length of wire in a fixed mass of water and measured the temperature rise due to a known current through the wire for a 30 minute period. By varying the current and the length of the wire he deduced that the heat produced was proportional to the square of the current multiplied by the electrical resistance of the wire.
The name modon was coined by M. E. Stern as a pun on the joint USA-USSR oceanographic research program POLYMODE. [2] The modon is a dipole-vortex solution to the potential-vorticity equation that was theorized in order to explain anomalous atmospheric blocking events and eddy structures in rotating fluids, [3] and the first solution was obtained by Stern in 1975.
The eddy-current in the part advancing toward the poles tends to repel those poles and to be repelled by them. It is obvious that any slits cut in the disk will tend to limit the flow of the eddy-currents, and by limiting them to increase the resistance of their possible paths in the metal, though it will not diminish the electromotive-force.
In principle, LET represents a modification of the traditional eddy current testing from which it differs in two aspects, namely (i) how eddy currents are induced and (ii) how their perturbation is detected. In LET eddy currents are generated by providing the relative motion between the conductor under test and a permanent magnet (see figure 10).