Search results
Results from the WOW.Com Content Network
Enantiostasis is not a form of classical homeostasis, meaning "standing at a similar level," which focuses on maintenance of internal body conditions such as pH, oxygen levels, and ion concentrations. Rather than maintaining homeostatic (stable ideal) conditions, enantiostasis involves maintaining only functionality in spite of external ...
In biology, homeostasis (British also homoeostasis; / h ɒ m i oʊ ˈ s t eɪ s ɪ s,-m i ə-/) is the state of steady internal physical and chemical conditions maintained by living systems. [1] This is the condition of optimal functioning for the organism and includes many variables, such as body temperature and fluid balance , being kept ...
The HOMA model was originally designed as a special case of a more general structural (HOMA-CIGMA) model that includes the continuous infusion of glucose with model assessment (CIGMA) approach; both techniques use mathematical equations to describe the functioning of the major effector organs influencing glucose/insulin interactions.
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). [1] The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism . [ 1 ]
Cell damage (also known as cell injury) is a variety of changes of stress that a cell suffers due to external as well as internal environmental changes. Amongst other causes, this can be due to physical, chemical, infectious, biological, nutritional or immunological factors.
Fluid balance is an aspect of the homeostasis of organisms in which the amount of water in the organism needs to be controlled, via osmoregulation and behavior, such that the concentrations of electrolytes (salts in solution) in the various body fluids are kept within healthy ranges.
Energy intake is measured by the amount of calories consumed from food and fluids. [1] Energy intake is modulated by hunger, which is primarily regulated by the hypothalamus, [1] and choice, which is determined by the sets of brain structures that are responsible for stimulus control (i.e., operant conditioning and classical conditioning) and cognitive control of eating behavior.