Search results
Results from the WOW.Com Content Network
Different methods for correlation clustering of this type are discussed in [13] and the relationship to different types of clustering is discussed in. [14] See also Clustering high-dimensional data. Correlation clustering (according to this definition) can be shown to be closely related to biclustering. As in biclustering, the goal is to ...
The Java just-in-time compiler optimizes all combinations to a similar extent, making benchmarking results more comparable if they share large parts of the code. When developing new algorithms or index structures, the existing components can be easily reused, and the type safety of Java detects many programming errors at compile time.
MALLET is an integrated collection of Java code useful for statistical natural language processing, document classification, cluster analysis, information extraction, topic modeling and other machine learning applications to text.
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
H2O.ai is an open-source data science and machine learning platform; KNIME is a machine learning and data mining software implemented in Java. Massive Online Analysis (MOA) is an open-source project for large scale mining of data streams, also developed at the University of Waikato in New Zealand. Neural Designer is a data mining software based ...
Assign each non-core point to a nearby cluster if the cluster is an ε (eps) neighbor, otherwise assign it to noise. A naive implementation of this requires storing the neighborhoods in step 1, thus requiring substantial memory. The original DBSCAN algorithm does not require this by performing these steps for one point at a time.
HiSC [7] is a hierarchical subspace clustering (axis-parallel) method based on OPTICS. HiCO [8] is a hierarchical correlation clustering algorithm based on OPTICS. DiSH [9] is an improvement over HiSC that can find more complex hierarchies. FOPTICS [10] is a faster implementation using random projections.
His research is focused around correlation clustering, high-dimensional data indexing and analysis, spatial data mining and spatial data management as well as multimedia databases. His research group developed a software framework titled ELKI that is designed for the parallel research of index structures, data mining algorithms and their ...