Search results
Results from the WOW.Com Content Network
A circadian rhythm (/ s ər ˈ k eɪ d i ə n /), or circadian cycle, is a natural oscillation that repeats roughly every 24 hours.Circadian rhythms can refer to any process that originates within an organism (i.e., endogenous) and responds to the environment (is entrained by the environment).
In most vertebrates, exposure to light sets off a chain reaction of enzymatic events within the pineal gland that regulates circadian rhythms. [64] In humans and other mammals, the light signals necessary to set circadian rhythms are sent from the eye through the retinohypothalamic system to the suprachiasmatic nuclei (SCN) and the pineal gland.
The best studied rhythm in chronobiology is the circadian rhythm, a roughly 24-hour cycle shown by physiological processes in all these organisms. The term circadian comes from the Latin circa, meaning "around" and dies, "day", meaning "approximately a day." It is regulated by circadian clocks.
First, it results in daily rhythms in both gene transcription and protein abundance and size, caused by the delay between translation and negative regulation of the gene. The cycle's period, or time required to complete one cycle, remains consistent in each individual and, barring mutation, is typically near 24 hours.
The best studied rhythm in chronobiology is the circadian rhythm, a roughly 24-hour cycle shown by physiological processes in all these organisms. The term circadian comes from the Latin circa, meaning "around" and dies, "day", meaning "approximately a day." It is regulated by circadian clocks.
Renal physiology (Latin renes, "kidneys") is the study of the physiology of the kidney. This encompasses all functions of the kidney, including maintenance of acid-base balance; regulation of fluid balance; regulation of sodium, potassium, and other electrolytes; clearance of toxins; absorption of glucose, amino acids, and other small molecules ...
Lim-1 (Lhx1) functions as a transcription factor necessary for regulating the production of coupling factors required for proper communication between the neurons located in the part of the brain responsible for regulation of circadian rhythms called the suprachiasmatic nucleus (SCN). [15]
Absent protein in previous studies may be due to the high amplitude circadian rhythm of expression of this isoform in some tissues. The mRNA is expressed in various peripheral tissues, either in a circadian fashion (e.g., in the liver and kidney) or constitutively (e.g., in the muscle). [15] [16]