Search results
Results from the WOW.Com Content Network
The reactivity series is sometimes quoted in the strict reverse order of standard electrode potentials, when it is also known as the "electrochemical series". [8] The following list includes the metallic elements of the first six periods. It is mostly based on tables provided by NIST.
Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; Unit activity for each solvent and pure solid or liquid species; and Absolute partial pressure 101.325 kPa (1.00000 atm; 1.01325 bar) for each gaseous reagent — the convention in most literature data but not the current standard state (100 kPa).
The electrode potentials are independent of the number of electrons transferred —they are expressed in volts, which measure energy per electron transferred—and so the two electrode potentials can be simply combined to give the overall cell potential even if different numbers of electrons are involved in the two electrode reactions.
The difference can be measured as a difference in voltage potential: the less noble metal is the one with a lower (that is, more negative) electrode potential than the nobler one, and will function as the anode (electron or anion attractor) within the electrolyte device functioning as described above (a galvanic cell).
Charge transfer coefficient, and symmetry factor (symbols α and β, respectively) are two related parameters used in description of the kinetics of electrochemical reactions. They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1]
When an oxidizer (Ox) accepts a number z of electrons ( e −) to be converted in its reduced form (Red), the half-reaction is expressed as: Ox + z e − → Red. The reaction quotient (Q r) is the ratio of the chemical activity (a i) of the reduced form (the reductant, a Red) to the activity of the oxidized form (the oxidant, a ox).
There should be a reactivity number. The reactivity number range from 0-5 or 0-10. Cosmium 23:55, 29 January 2007 (UTC) The Pauling scale rates elements according to electronegativity, while the standard electrode potential chart rates elements according to the force that they give away or accept electrons.
The overall chemical reaction taking place in a cell is made up of two independent half-reactions, which describe chemical changes at the two electrodes. To focus on the reaction at the working electrode, the reference electrode is standardized with constant (buffered or saturated) concentrations of each participant of the redox reaction. [1]