enow.com Web Search

  1. Ads

    related to: 5.3 solving quadratics by factoring

Search results

  1. Results from the WOW.Com Content Network
  2. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.

  3. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields , a fundamental step is a factorization of a polynomial over a finite field .

  4. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    The roots of the quadratic function y = ⁠ 1 / 2 ⁠ x 2 − 3x + ⁠ 5 / 2 ⁠ are the places where the graph intersects the x-axis, the values x = 1 and x = 5.They can be found via the quadratic formula.

  5. Algebraic equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_equation

    If an equation P(x) = 0 of degree n has a rational root α, the associated polynomial can be factored to give the form P(X) = (X – α)Q(X) (by dividing P(X) by X – α or by writing P(X) – P(α) as a linear combination of terms of the form X k – α k, and factoring out X – α. Solving P(x) = 0 thus reduces to solving the degree n – 1 ...

  6. Quadratic form - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form

    A finite-dimensional vector space with a quadratic form is called a quadratic space. The map Q is a homogeneous function of degree 2, which means that it has the property that, for all a in K and v in V : Q ( a v ) = a 2 Q ( v ) . {\displaystyle Q(av)=a^{2}Q(v).}

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The following iterates are 1.0103, 1.00093, 1.0000082, and 1.00000000065, illustrating quadratic convergence. This highlights that quadratic convergence of a Newton iteration does not mean that only few iterates are required; this only applies once the sequence of iterates is sufficiently close to the root. [14]

  8. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  9. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    When K is the field of real numbers, some of the p i may be quadratic, so, in the partial fraction decomposition, quotients of linear polynomials by powers of quadratic polynomials may also occur. In the preceding theorem, one may replace "distinct irreducible polynomials" by "pairwise coprime polynomials that are coprime with their derivative".

  1. Ads

    related to: 5.3 solving quadratics by factoring