enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.

  3. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points.

  4. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating ⁠ ⁠ and ⁠ ⁠, which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]

  5. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    Graph of a polynomial of degree 4, with 3 critical points and four real roots (crossings of the x axis) (and thus no complex roots). If one or the other of the local minima were above the x axis, or if the local maximum were below it, or if there were no local maximum and one minimum below the x axis, there would only be two real roots (and two complex roots).

  6. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    A quadratic equation always has two roots, if complex roots are included and a double root is counted for two. A quadratic equation can be factored into an equivalent equation [ 3 ] a x 2 + b x + c = a ( x − r ) ( x − s ) = 0 {\displaystyle ax^{2}+bx+c=a(x-r)(x-s)=0} where r and s are the solutions for x .

  7. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    This allows computing the multiple root, and the third root can be deduced from the sum of the roots, which is provided by Vieta's formulas. A difference with other characteristics is that, in characteristic 2, the formula for a double root involves a square root, and, in characteristic 3, the formula for a triple root involves a cube root.

  8. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.

  9. Viète's formula - Wikipedia

    en.wikipedia.org/wiki/Viète's_formula

    In Viète's formula, the numbers of terms and digits are proportional to each other: the product of the first n terms in the limit gives an expression for π that is accurate to approximately 0.6n digits. [4] [15] This convergence rate compares very favorably with the Wallis product, a later infinite product formula for π.