enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal ...

  3. Off-by-one error - Wikipedia

    en.wikipedia.org/wiki/Off-by-one_error

    Off-by-one errors are common in using the C library because it is not consistent with respect to whether one needs to subtract 1 byte – functions like fgets() and strncpy will never write past the length given them (fgets() subtracts 1 itself, and only retrieves (length − 1) bytes), whereas others, like strncat will write past the length given them.

  4. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.

  5. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    PHP: The BC Math module provides arbitrary precision mathematics. PicoLisp: supports arbitrary precision integers. Pike: the built-in int type will silently change from machine-native integer to arbitrary precision as soon as the value exceeds the former's capacity. Prolog: ISO standard compatible Prolog systems can check the Prolog flag ...

  6. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Rather than storing values as a fixed number of bits related to the size of the processor register, these implementations typically use variable-length arrays of digits. Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required.

  7. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    The extra cost of eliminating "modulo bias" when generating random integers for a Fisher-Yates shuffle depends on the approach (classic modulo, floating-point multiplication or Lemire's integer multiplication), the size of the array to be shuffled, and the random number generator used. [20]: Benchmarking ...

  8. Arithmetic shift - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_shift

    This is different from the way rounding is usually done in signed integer division (which rounds towards 0). This discrepancy has led to bugs in a number of compilers. [8] For example, in the x86 instruction set, the SAR instruction (arithmetic right shift) divides a signed number by a power of two, rounding towards negative infinity. [9]

  9. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).