Search results
Results from the WOW.Com Content Network
When a triple of numbers a, b and c forms a primitive Pythagorean triple, then (c minus the even leg) and one-half of (c minus the odd leg) are both perfect squares; however this is not a sufficient condition, as the numbers {1, 8, 9} pass the perfect squares test but are not a Pythagorean triple since 1 2 + 8 2 ≠ 9 2. At most one of a, b, c ...
Wade and Wade [17] first introduced the categorization of Pythagorean triples by their height, defined as c − b, linking 3,4,5 to 5,12,13 and 7,24,25 and so on. McCullough and Wade [18] extended this approach, which produces all Pythagorean triples when k > h √ 2 /d: Write a positive integer h as pq 2 with p square-free and q positive.
A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).
A Pythagorean triple is a set of three positive integers a, b, and c having the property that they can be respectively the two legs and the hypotenuse of a right triangle, thus satisfying the equation + =; the triple is said to be primitive if and only if the greatest common divisor of a, b, and c is one.
As a side effect, this produces a rational Pythagorean triple, with legs v 1 and 1 and hypotenuse v 4. It should be pointed out that the problem on YBC 6967 actually solves the equation x − 1 00 x = x − 60 x = c {\textstyle x-{\tfrac {1\ 00}{x}}=x-{\tfrac {60}{x}}=c} , which entails replacing the expression for v 3 above with v 3 = 60 + v 2 .
[4] [6] The first three of these define the primitive Pythagorean triples (the ones in which the two sides and hypotenuse have no common factor), derive the standard formula for generating all primitive Pythagorean triples, compute the inradius of Pythagorean triangles, and construct all triangles with sides of length at most 100. [6]
1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90 ... (sequence A002620 in the OEIS ) The number of integer triangles (up to congruence) with given largest side c and integer triple ( a , b , c ) that lie on or within a semicircle of diameter c is the number of integer triples such that a + b > c , a 2 + b 2 ≤ c 2 and a ≤ b ...
There are infinitely many such triples, [19] and methods for generating such triples have been studied in many cultures, beginning with the Babylonians [20] and later ancient Greek, Chinese, and Indian mathematicians. [1] Mathematically, the definition of a Pythagorean triple is a set of three integers (a, b, c) that satisfy the equation [21] a ...