enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.

  3. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    For most practical purposes, the volume inside a sphere inscribed in a cube can be approximated as 52.4% of the volume of the cube, since V = ⁠ π / 6 ⁠ d 3, where d is the diameter of the sphere and also the length of a side of the cube and ⁠ π / 6 ⁠ ≈ 0.5236.

  4. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    When a regular dodecahedron is inscribed in a sphere, it occupies more of the sphere's volume (66.49%) than an icosahedron inscribed in the same sphere (60.55%). [10] The resulting of both spheres' volumes initially began from the problem by ancient Greeks, determining which of two shapes has a larger volume: an icosahedron inscribed in a ...

  5. Ball (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ball_(mathematics)

    In Euclidean n-space, an (open) n-ball of radius r and center x is the set of all points of distance less than r from x.A closed n-ball of radius r is the set of all points of distance less than or equal to r away from x.

  6. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.

  7. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    Plot of the surface-area:volume ratio (SA:V) for a 3-dimensional ball, showing the ratio decline inversely as the radius of the ball increases. A solid sphere or ball is a three-dimensional object, being the solid figure bounded by a sphere. (In geometry, the term sphere properly refers only to the surface, so a sphere thus lacks volume in this ...

  8. Equivalent spherical diameter - Wikipedia

    en.wikipedia.org/wiki/Equivalent_spherical_diameter

    In this case, the cross-sectional area becomes nearly the same as that of a sphere with equal volume. [6] In addition, the favored mean particle size for laser diffraction results is the D[4,3] or De Brouckere mean diameter, which is typically applied to measurement techniques where the measured signal is proportional to the volume of the ...

  9. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    If one knows that the volume of a cone is (), then one can use Cavalieri's principle to derive the fact that the volume of a sphere is , where is the radius. That is done as follows: Consider a sphere of radius r {\displaystyle r} and a cylinder of radius r {\displaystyle r} and height r {\displaystyle r} .