Search results
Results from the WOW.Com Content Network
This is a list of axioms as that term is understood in mathematics. In epistemology , the word axiom is understood differently; see axiom and self-evidence . Individual axioms are almost always part of a larger axiomatic system .
Pages in category "Mathematical axioms" The following 22 pages are in this category, out of 22 total. ... List of axioms; A. Axiom of countability; B. Blum axioms; C.
A lesson learned by mathematics in the last 150 years is that it is useful to strip the meaning away from the mathematical assertions (axioms, postulates, propositions, theorems) and definitions. One must concede the need for primitive notions, or undefined terms or concepts, in any study. Such abstraction or formalization makes mathematical ...
This is a list of notable theorems. Lists of theorems and similar statements include: List of algebras; List of algorithms; List of axioms; List of conjectures; List of data structures; List of derivatives and integrals in alternative calculi; List of equations; List of fundamental theorems; List of hypotheses; List of inequalities; Lists of ...
List or describe a set of sentences in the language L σ, called the axioms of the theory. Give a set of σ-structures, and define a theory to be the set of sentences in L σ holding in all these models. For example, the "theory of finite fields" consists of all sentences in the language of fields that are true in all finite fields. An L σ ...
In mathematics and logic, an axiomatic system is any collection [a] of primitive notions and axioms to logically derive theorems.A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems.
Many different equivalent complete axiom systems have been formulated. They differ in the choice of basic connectives used, which in all cases have to be functionally complete (i.e. able to express by composition all n-ary truth tables), and in the exact complete choice of axioms over the chosen basis of connectives.
This page includes a list of large cardinal properties in the mathematical field of set theory.It is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property.