enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    It is also possible to use depth-first search to linearly order the vertices of a graph or tree. There are four possible ways of doing this: A preordering is a list of the vertices in the order that they were first visited by the depth-first search algorithm. This is a compact and natural way of describing the progress of the search, as was ...

  3. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    IDDFS achieves breadth-first search's completeness (when the branching factor is finite) using depth-first search's space-efficiency. If a solution exists, it will find a solution path with the fewest arcs. [2] Iterative deepening visits states multiple times, and it may seem wasteful.

  4. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.

  5. Graph traversal algorithms - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  6. External memory graph traversal - Wikipedia

    en.wikipedia.org/wiki/External_memory_graph...

    Graph traversal is a subroutine in most graph algorithms. The goal of a graph traversal algorithm is to visit (and / or process) every node of a graph. Graph traversal algorithms, like breadth-first search and depth-first search, are analyzed using the von Neumann model, which assumes uniform memory access cost. This view neglects the fact ...

  7. MTD(f) - Wikipedia

    en.wikipedia.org/wiki/MTD(f)

    The better the quicker the algorithm converges. Could be 0 for first call. d Depth to loop for. An iterative deepening depth-first search could be done by calling MTDF() multiple times with incrementing d and providing the best previous result in f. [5] AlphaBetaWithMemory is a variation of Alpha Beta Search that caches previous results.

  8. Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze_generation_algorithm

    Randomized depth-first search on a hexagonal grid. The depth-first search algorithm of maze generation is frequently implemented using backtracking. This can be described with a following recursive routine: Given a current cell as a parameter; Mark the current cell as visited; While the current cell has any unvisited neighbour cells

  9. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    A stack (LIFO queue) will yield a depth-first algorithm. A best-first branch and bound algorithm can be obtained by using a priority queue that sorts nodes on their lower bound. [3] Examples of best-first search algorithms with this premise are Dijkstra's algorithm and its descendant A* search. The depth-first variant is recommended when no ...